AI那么大,我们来说点具体的移动互联

来源:36氪 / 作者:langxin / 2016-12-06 10:40
导语: 深究其本质,当医疗这一繁复而保守的传统领域,遇上人工智能这一欣欣向荣的科技创新,两者如何碰撞出最大的价值和突破? 编者按:本文来自 微信 公众号金沙江创投(ID:G

导语:深究其本质,当医疗这一繁复而保守的传统领域,遇上人工智能这一欣欣向荣的科技创新,两者如何碰撞出最大的价值和突破?

       编者按:本文来自微信公众号”金沙江创投“(ID:GSR-Ventures),作者林仁俊、张清,36氪经授权发布。
近几年,纵观人工智能的大版图,医疗健康已经成长为最热门的领域之一。2012年以来,共有15亿美金投入到188家初创公司。2015年,公司数量增长高达60%,而2016年将再次刷新历史数据。今年二季度已经出现了如Flatiron,iCarbonX(碳云智能)以及Butterfly Network这样的独角兽级别公司。
看来,资本早就以实际行动对这个领域表示了青睐。深究其本质,当医疗这一繁复而保守的传统领域,遇上人工智能这一欣欣向荣的科技创新,两者如何碰撞出最大的价值和突破?这是我们一直试图回答的问题。
要回答这个问题,首先得把人工智能和医疗两者分别做一个基本面的梳理和研究。
下面,我们来分享金沙江的研究和基本观点。

AI是什么:究竟有多智能?

回顾AI的历史发展:John McCarthy在1956年的The Dartmouth Conference上首次提出人工智能的概念;其演变从以“推理”为重点到以“知识”为重点,再到以“学习”为重点。机器学习成为最凸显的一个分支,应用领域包括:数据挖掘、计算机视觉、自然语言处理、推理能力、知识呈现、感知以及通用智能——我们的终极目标。
经历过三起三落的人工智能,现在能够走出寒冬,主要受益于三个进步:大数据的产生;算法的进步,尤其是深度学习的技术,能够大量地处理未标记的数据、无监督地训练以及有监督地反向支持运算(如聚类);以及GPU对计算速度的支持。
今年3月的Alpha Go极好的验证了一个道理:对于大量、重复、有迹可循的数据来说,计算机远远胜于人类。当前,人工智能并非是真正意义上的智能。更妥帖的定义,应该说是一个高级的概率统计学方法,提供了一个强有力的工具,来处理现实中诸多不确定性。参数越多, 变化越明显,结构越复杂,直截了当的原始分析法就越不可靠。曾经令人不知所措的随机和混沌,第一次有了不错的解决方法。

医疗:无数个复杂、动态更新的数据库?

再看医疗:医疗健康和生命科学的复杂程度也许能够满足深度学习的胃口。其诸多方面都可以借力于人工智能,例如风险识别、行为监测/干涉、影像诊断、医院管理,到虚拟助手、营养学、精神疾病、精准治疗等。下图有一个很好的总结,可以看到这个领域枝繁叶茂的蓬勃发展。

d31l4j370lpcj20s!heading.jpeg

对于个体,从基因、分子结构,到细胞、组织、器官、系统和人体,生理和病理在时空层面的变化,无时无刻不在产生大量的数据。随手翻翻医院的电子病历系统,对于每一个患者的每一次就诊,从社会信息、主诉症状、既往病史、家族病史、检查结果,到初步诊断、治疗计划和随访记录,都是一个复杂、动态更新的数据库。
医生看病是一个病人、一个病人来看的,电子病例对于医生而言,更多的是一个便捷记事本和备忘录,而非一个信息宝藏。因为医生不可能将全部信息汇总,并迅速地测试各种模型,来验证某些理论、发现某种规律。作为医疗主体,医生的视角是专注于一个病人,了解并跟踪其生理变化过程。一名优秀的医生,一天能看的病例也极为有限,很快就达到瓶颈,即便不吃不睡,也最多在百人的量级。稍有复杂的多系统性疾病,一两例可能就让医生吃不消了。原因何在?可能要引用前文所说,在大量、重复、有迹可循的数据领域,计算机远远胜于人类。
这仅仅是从个体的角度来看。从疾病演化的角度,从医疗资源调配的角度,从诊治规范不断更新变化的角度,从数据类型和体量的角度等等,医疗健康的量级实在太庞大。仅仅是信息汇总的过程就不容易,更何况要基于这些信息作出决策、采取行动呢?

6vzloipx08ccwhwa!heading.jpeg

不断延长医学院学习的时间,不断增加住院医师培训的时间和内容,不断新建医院和科研机构,真的是解决问题的方法吗?如果不是,那么,我们需要什么样的方法,才能改进这个不可持续的现状呢?这个问题的答案,价值万亿、利在千秋。

人工智能的逻辑也许碰巧满足了医学知识的特点……

针对大量、重复、有迹可循的数据,针对不确定性、随机性和混沌的本质,针对动态演变、推陈出新的知识,助力于信息统计、推理决策、监督反馈等诸多方面。随着医疗信息电子化的完善,让很多愿景成为可能。

ym5ael4ltrosgu9y!heading.jpeg

回顾历史,第一场AI在医学领域的大会是1975年6月,The First Rutgers AIM Workshop。当时引用了因果、分类、关联、规则以及基于框架的模型来分析。Edward Hance Shortliffe医生是这个领域的先驱,开发了MYCIN系统,成立了American Medical informatics Association,第一个学术团体。但AI在医学领域的发展却或多或少有些阻力。
MYCIN是用来诊断菌血症并提供治疗方案的一套体系,拥有各种症状以及细菌谱的庞大数据库。它比医学生甚至医生都要优秀,但其局限性在于,缺少人类的常识和直觉,对医生、医院以及操作流程很陌生,没有病人、医生、医院、死亡、康复、复发等信息,这就极大限制了其使用范围。

r5uxjr7wemvsfdvv!heading.jpeg

当下,Google,Facebook,BAT等领军科技公司都在这个交叉点有所布局。例如,“百度医疗大脑”主要是在医疗数据和专业文献的基础上,设计出人工智能化的产品,模拟医生问诊的流程,并给出最终建议,在这个过程中收集、汇总、分类和整理病人的描述,辅助医生问诊。庞大的神经网络被赋予了超强的记忆能力和计算能力,使得智能诊断成为可能,在日常诊疗过程中成为医生的得力助手。

5rads7lkcaywf7fc!heading.jpeg

这只是冰山一角。但当传统、沉睡的行业被唤醒时,这的确是一个令人激动的时点。我们会精挑细选地和大家分享案例,在之后的文字中讲几个好故事。

One more thing…

科技本身难以等价于价值或者影响力。创新、创业的核心永远是围绕未满足的需求和真实而顽固的痛点。抓住这些本质问题,再来看是否能够借力于新技术来满足需求和解决痛点。关于AI与医疗,我们期待你的真知灼见或是创业方向的探讨。

阅读延展

1
3